Intelligent Diagnosis of Rotating Machinery Faults-A Review

نویسندگان

  • Hongyu Yang
  • Joseph Mathew
چکیده

(2002) Intelligent diagnosis of rotating machinery faults-A review. The task of condition monitoring and fault diagnosis of rotating machinery faults is both significant and important but is often cumbersome and labour intensive. Automating the procedure of feature extraction, fault detection and identification has the advantage of reducing the reliance on experienced personnel with expert knowledge. Various diagnostics methods have been proposed for different types of rotating machinery. However, little research has been conducted on synthesizing and analysing these techniques, resulting in apprehension when technicians need to choose a technique suitable for application. This paper presents a review of a variety of diagnosis techniques that have had demonstrated success when applied to rotating machinery and highlights fault detection and identification techniques based mainly on artificial intelligence approaches. The literature is categorised in the following diagnostic groups: neural networks, fuzzy sets, expert systems, and hybrid AI techniques based fault diagnosis. The paper concludes with a brief description of a new approach to diagnosis using a Wavelet based Coactive Artificial Neuro-Fuzzy Inference System (CANFIS) which the authors plan to develop and implement for diagnosing machine faults.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Intelligent Fault Diagnosis Approach for Critical Rotating Machinery in the Time-frequency Domain

The rotating machinery is a common class of machinery in the industry. The root cause of faults in the rotating machinery is often faulty rolling element bearings. This paper presents a novel technique using artificial neural network learning for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (harmmean and median), whic...

متن کامل

Bearing Fault Detection Based on Maximum Likelihood Estimation and Optimized ANN Using the Bees Algorithm

Rotating machinery is the most common machinery in industry. The root of the faults in rotating machinery is often faulty rolling element bearings. This paper presents a technique using optimized artificial neural network by the Bees Algorithm for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (maximum likelihood estima...

متن کامل

Intelligent Method for Diagnosing Structural Faults of Rotating Machinery Using Ant Colony Optimization

Structural faults, such as unbalance, misalignment and looseness, etc., often occur in the shafts of rotating machinery. These faults may cause serious machine accidents and lead to great production losses. This paper proposes an intelligent method for diagnosing structural faults of rotating machinery using ant colony optimization (ACO) and relative ratio symptom parameters (RRSPs) in order to...

متن کامل

Basis Pursuit based intelligent diagnosis of bearing faults

Purpose – To present a new application of Pursuit based analysis for diagnosing rolling element bearing faults. Methodology Intelligent diagnosis of rolling element bearing faults in rotating machinery involves the procedure of feature extraction using modern signal processing techniques and artificial intelligence technique-based fault detection and identification. This paper presents a compar...

متن کامل

LMD Method and Multi-Class RWSVM of Fault Diagnosis for Rotating Machinery Using Condition Monitoring Information

Timely and accurate condition monitoring and fault diagnosis of rotating machinery are very important to maintain a high degree of availability, reliability and operational safety. This paper presents a novel intelligent method based on local mean decomposition (LMD) and multi-class reproducing wavelet support vector machines (RWSVM), which is applied to diagnose rotating machinery faults. Firs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008